If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x-4320=0
a = 7; b = 4; c = -4320;
Δ = b2-4ac
Δ = 42-4·7·(-4320)
Δ = 120976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120976}=\sqrt{16*7561}=\sqrt{16}*\sqrt{7561}=4\sqrt{7561}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7561}}{2*7}=\frac{-4-4\sqrt{7561}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7561}}{2*7}=\frac{-4+4\sqrt{7561}}{14} $
| 4a^2+184a-81=0 | | x/3+5-x/6+x/4=0 | | 50+x=93 | | 4=-3x=31-6x | | 0.6x+1=0.167x-7 | | 8=a/7-6 | | 4x^2=(64)^2 | | 35=13+x | | 12y+46=106 | | (x+4)(4x-3)+x=186 | | 2x^2+7x-87=0 | | 3x(3x+1)=x-6(9x-2) | | (25/4)^x=8/125 | | 16=-m | | 21=5r-9 | | X×y=-68 | | 5(3x+1)+4=x+27 | | 3(4a-12)=12 | | 2a-16=2+5 | | 2^(2x-4)=64 | | (-8+3)+(6x+3)+(9x+12)=180 | | (y+10)^2+y^2=2500 | | -8x+5=43 | | 5x16+x=× | | 2^n=20^8 | | 2^n=20^20 | | X+4x-6+11=0 | | (x+5)+(x+15)+(10x-20)=180 | | 0,25z=100 | | 7x+3=3x-10 | | -3x-5x=2x-18 | | x/7=0,3 |